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I. INTRODUCTION 

The theoretical plate mode1 continues to enjoy widespread popularity as a 
description of the behavior of chromatographic peaks. The plate model is generally 
attributed to Martin and Synge’. but has been developed further and modified by 
Glueckauf’, Mayer and Tompkins3 and others. Giddings4 gave an excellent discus- 
sion of the plate theory and its limitations. 

In the plate theory of chromatography. a column is divided into a number of 

imaginary sections called plates. In each plate it is assumed that a sample substance is 
partitioned between the stationary and mobile phases and that equilibrium has been 
attained. Then the mobile phase in each plate moves forward to the next plate, 
carrying the sample substance in the mobile phase forward exactly one plate. A new 
partitioning occurs simultaneously in each plate. and it again is assumed that equilib- 
rium is attained. This process is repeated many times, until sample constituents move 
along and off the column at different rates and thus are separated. 

The number of imaginary sections in a column is generally called the number 
of theoretical plates, or theoretical plate number, and is designated as N (or n). The 
numerical value of N for any given column length is maximized by using very small 
spheres of uniform diameter, thinly coated with a stationary phase and carefully 
packed. as the column stationary phase. Factors such as column dimensions and 
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ENCi-82. This work was supported by the Dlrector of Energy Research, Ofice of Basic Energy Sciences. 

037%4355:X3:SO6.00 #?s 1983 Elsevier Science Publishers 9.V 



194 I S FRlT7. D II SC’OTT 

fittings and proper eluent flow-rate also affect the value of h’and hence the separation 
eficlency of the column 

There IS no convement way of measuring the mtrmslc value of N; It must be 
calculated from measurable parameters, namely the retention time (or volume) of a 
peak and the peak width (or 0 which IS a function of peak width). The defining 
equation for this calculation IS 

where t is the peak retention time, II’ IS the peak width at Its base (In the same umts as 
f) and o2 IS the variance of the peak wtdth. 

Some chromatographers prefer to use the number of effective theoretlcal plates 
ac a measure of the separation power of a column 

c i 2 

.yef‘ = 16 tt,, = 
(t - t”)’ 

IL’ CT2 

where t, IS the retention time of a non-sorbed substance, or the “dead time” of the 
column. As early as 1959 Purnell’.6 noted that ‘IVe,, (for which he used S, rather than 
,Y) 1s critlcal m determInIng the separation ability of a chromatographic column He 
found that the resolution of alkanes was mconslstent with the observed value of ,‘v’ 
when the retention volumes are very small Widely used equations show that resolu- 
tion of chromatographic peaks IS proportional to the number of effective theoretical 
plates 

The plate theory of chromatography has been crltlclzed as lacking m physlcal 
reahty because eluent flow m actual columns ob\lously IS continuous and not a 
dlscontmuous flow from one plate to the next as portrayed by the plate theory. It IS 
debatable whether this obJection 1s vahd because any theory that gikes results con- 
slstent with experlmental behavior would be useful despite differences in the actual 
and theoretIca mechanrsms 

Glddmgs4 crltlclzed the plate model on several counts and concluded that It 
“falls m the most Important test of all the cery practical matter of predictmg zone 
dispersion as a function of the numerous \anables open to manipulation by the 
Investigator” These carlables Include the particle size of the solid support. thickness 
of stattonary phase coating. eluent flow-rate and diffusion coefficients m the 
stationary and mobile phases. 

The rate theory of chromatography has tended to supplement, rather than 
replace, the plate theory. The Van Deemter equatron? describes the effects of eluent 
flow-rate, longitudinal dlffuslon and multi-path effects wlthm the column on plate 
height, H (H = column length, divided by .V) For capillary columns In gas chroma- 
tography, the Golay equation’ shows how dlffuslon coefficients, thickness of 
stationary phase coatmg. column diameter, flow-rate. etc., contrlbute to plate height. 
H Glddmgs” has made major contrlbutlons to the dynamics of chromatography and 
has shown the effect of many experImenta parameters on plate height m both gas 
(GC) and hquld chromatography (LC). 

Although a theoretlcal value for H can be calculated from the dlffuslon coef- 
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ficients and other parameters contained rn rate equatrons, the calculations often are 
not very accurate. For example. Desty and Goldup’ compared experimental and 
calculated values for terms rn the Golay equation and found good agreement for the 
B term but that the experimental C term was Z--6 trmes the calculated value. The 
maJor value of rate equations IS m predrctmg in a qualitatrve manner (or semi-quantr- 
tatrre at best) how a change In particle srze, for example. wrll affect chromatographic 
beha\,ior. 

Most chromatographers still rely on only two act~~al measurements to evaluate 
performance peak retention time and peak width The drscussron In a recent book on 
lrqurd chromatography’” IS farrly typical of the way m whrch the dynamics of chro- 
matography currently are handled. The authors consrder that the theoretrcal plate 
number, N, of various chromatographrc peaks IS approxtmately constant and there- 
fore they consider both .Y and H as measures of chromatographic efficiency. Thus. the 
rate theory and plate theory are m a way stall tied together. 

There seems to be some confusion as to how IV varies (or does not vary) as the 
capacity factor. li. changes (recall that retention trme of a peak varies directly with its 
capacity factor). While Snyder and Kirkland consider that 5’ 1s approximately con- 
stant wrth k, Grab” states that N tends to increase with higher k and KaiserI 
Indicates that Y decreases as k becomes larger Jenmngs’” provides a nice experi- 
mental answer to this question Careful gas chromatographtc separation of M-alkanec 
on a caprllary column shows that X IS very high at low values of k and decreases with 
mcreasmg k. rapidly at first when k IS small. and then more slowly at larger k values. 
eventually approachmg an asymptotic value. Their data show that 11,~~ starts at or 
near zero and increases as k becomes larger hrefr appears to approach the same 
asymptotic values as 11: The change m ,V or Nerr with k 1s partrcularly great at k 
values below 1 0 

In this paper we derive simple stattstrcal expressions for calculatmg the mean 
and vat-lance of chromatographrc peaks that are stall on a column (positron peaks) 
and for these peaks as they leave the column (exit peaks). The variances of posrtion 
and exit peaks as a function of capacity factor, k, are compared We also show how 
the maJor contrtbutions to peak broadenrng In caprllary column GC can be de- 
termined at any k value usmg gaseous dtffusron coefficients computed from emprrr- 
tally determined constants for the atoms and chemical groups making up the carrier 
gas and the compounds separated. First. the peak variance contrrbutrons resulting 
from axial diffusion are calculated from a modified form of the Van Deemter equa- 
tion and are subtracted from the measured peak varrances. Then the remaming van- 
ante of each peak IS plotted against a functron of the capacity factor, k A plate 
number IS calculated from the slope of this linear plot which IS Independent of k and 
thus provides an excellent measure of performance for a column operating under 
specrfied. fixed condrtrons. The Intercept of this plot provrdes an estimate of the extra- 
column peak broadening of the chromatographrc system. 

For both GC and LC columns run at a single flow-rate. a similar approach IS 

outlrned that grves another plate number that also IS Independent of k but whrch 
Includes any peak broademng effects resultmg from axtal diffusion Thus plate number 
IS also useful rn descrrbtng the separating abrhty of a column under fixed condrtrons 
and m predrctmg the \,arrance of peaks of different k values from those in the test 

chromatogram 
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The authors feel that the material presented here will correct some of the 
confusion or misconceptions that many chromatographers seem to have about plate 
theory. We also think that the approach presented is a simple but practical way of 
handling some of the dynamic effects that determine the variance of chromatographic 
peaks. 

2. PLATE MODELS 

Using a statistical approach, we shall study two classical models falling into the 
category of plate theories: the first is the discrete flow model and the second the 
continuous flow model. The characteristic feature of a plate model is that the chroma- 
tographic column is considered to be divided into a sequence of disjoint segments, or 
“plates”. In our discussion, we shall refer to these as theoretical segments (ab- 
breviated to TS). The sample molecules proceed from one TS to the next until they 
leave the last segment and exit from the column. 

The purpose here is to derive statistical equations for the mean and variance of 
a peak that is still on the column (a position peak), and for a peak leabing the column 
(an exit peak); this will be done for each of the plate models. The statistical approach 
also leads to equations that describe the entire shape of position and exit peaks, 
although such equations for counter-current chromatography (CCC) are already 
available in the literature. 

3. DISCRETE FLOW MODEL 

The assumptions of the discrete flow plate model are (1) the entire mobile 
phase moves from each segment to the next at the end of discrete equal time intervals 
and (2) the sample chemical remains in equilibrium between the stationary and the 
mobile phases. In our analysis we shall study the movement of a single molecule 
through the column. In this form the equilibrium condition is expressed by the con- 
dition that the probability that the molecule is in the mobile phase is 1’. while the 

probability it is in the stationary phase is 1 - p. Thusp = i -: k ~ where k is the well 

known capacity factor. Thus the position of the molecule is random and depends 
crucially on the random “decisions” on whether to stick in the stationary phase or be 
free in the mobile phase during a given time unit. We shall measure the passage of 
time by the number of transfers (n) of the mobile phase that have occurred. We shall 
measure the location of the molecule by noting which segment it is in. Two quantities 
are of particular interest: one is the probability distribution of the position of the 
particle at time n, and the other the probability distribution of the time when the 
molecule leaves the column (the exit time). 

We shall first examine the position distribution. In each time period the particle 
either goes to the next segment of stays in its current segment. The first event takes 
place with probability p and the second with probability I - p. Which of these two 
events actually occurs in the kth time interval can be represented by the random 
variable 

B 1 with probability p 
A 0 with probability 1 ~ p 
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Random variables of this type are known as “Bernoulh” random variablesi4. If we 

assume that our molecule starts in segment zero at time zero, then its posmon at time 

n [denoted by X(M)] IS 

As the Bks are random. X(n) IS also random The Bernoulli random variables in the 
sum are all independent and rdentically distributed with mean p and variance p( 1 ~ y) 
It follows that the expected value of X(n) IS 

E[x(n)] = E( 2 Bk) = 2 E(B,) = HP 
\ 
k= 1 k 

and the variance of X(n) is 

,I 

Var[X(n)] = Var 
ic i 

Bk 

k=l 

These could also be written as 

L[X(n)] = n ‘+i-k ! ! 

I 

n 

c Var(B,) 

k 1 

(1) 

(2) 

(3) 

(4) 

The central limtt theorem of probability’4 tells us that X(n) is asymptotically normal, 
f e _ the dlstrlbutlon of X(n) approaches closer and closer to a normal, or Gaussian. 

distrrbutron as II increases in z 30 is usually considered large enough for this to be a 

good approxtmatton). 

Probability theory ~111 provide even more detailed information An elementary 
result tells us that the sum of IZ Independent identically distributed Bernoulli random 
vartables with parameter p has a bmomial distribution with parameters n and p (ref 
14) It follows that 

I? ’ 
P(X(H) = /) = (;) j,?.’ (1 - I')"-J = -~ -~- pJ (1 - JJ)“-J 

(?I - j)‘J! 

n’ X” ’ 

(n - ])!I’ (I + k)” 

where 1 is some particular TS m the column and II is the number of transfers, or the 
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number of time intervals that have elapsed for a substance of capactty factor k Eqn. 5 
can be used to calculate the dtstribution of molecules along the various TS In a 
column by msertmg various values of/ into the equation The result calculated ~111 be 
the fraction of the molecules m each theoretical segment 

Next we examine the problem of determining the exit time drstributton If we 
r-1 

denote the exit time by T, then T = I + 1 Dk In this equatton I’ IS the number of 
k=O 

theoretical segments m the column and therefore IS the mnnmal amount of time 
necessary for the molecule to leave the column if it never enters the stationary phase. 
D, IS the (random) ttme that the molecule spends in the stationary phase of segment j. 

D, can take on the values 0 1. 2, . . . and rt does so with probabtlitres I?. ,D( I - ). 

/J( 1 - /JJ2q . . respectrvely. This 1s the drstrtbutron of a geometric random varrable wrth 
parameterp (ref 14). Thus the random varrables D,, 1 = 0, . . , I’ - I are independent, 
ldenttcally distributed. geometric random variables with parameter p The mean and 
variance of such a geometric random variable is (I - p)‘p and (1 - p):/~~% respecttve- 
ly. Thus we obtain 

, 1 r-1 

E'(T) = E(r + 1 Dk) = I’ + 1 E(D,) = E’ + t-(+) = 
k-0 k 0 

t 
~ = r(1 + k) (6) 
P 

Var( T) = Var[r + 1’ I),) = Var[i’ Dk] = t1 Var( DL> = 

k 0 k-0 k = 0 

1 -P t ~ = rk(l + k) (7) 
i i P2 

We can once again apply the central hmtt theorem of probability to conclude that TIS 
asymptotically normal. I r . as P becomes large the dtstrtbutron of T approaches the 
norma dtstrrbutlon It IS even posstble to obtam the exact probabthty dtstrtbutton of 
T To do this we utilize an earher result P [X(n) = 11 = (y)p’( 1 - p)“-’ 
We obtain the followmg 

PIT = tzj = P(X(n - I) = r” - 1 and that the molecule 1s m the mobrle 
phase m the next time interval j = 

P (X(n - 1) = r - 1 ) P :mooecule IS m mobile phase m next time interval ) = 

K-:)/J-’ (1 - p,“mr]p = (::;)[J’(l - /J)n + 

Thus 

PIT = tII - _(“-I- 
’ - (H - t )‘(t 

I)! /in-’ 

- I)! (I + k)” 
(8) 
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The result tn eqn. 8 IS the fractton of molecules of capacity factor k that leaves a 
column. containing r theorettcal segments. durtng the t7th ttme period 

4 CONTINUOUS FLOW MODEL 

The baste assumpttons of this model are as follows: (I) eluent flows at a con- 
stant rate from one segment to the next; (2) the mobtle and stattonary phases rematn 
tn equtltbrtum at all times; and (3) there IS perfect mtxtng in the segments. As we shall 
be looking agatn at only a single molecule, we Interpret condttton (2) to mean that the 
probabtltty that the molecule IS tn the mobtle phase at any gtven ttme IS & and the 
probabiltty that it IS tn the stattonary phase IS i!+ “Units” are set up as follows. The 
amount of eluent tn one segment ts one untt of volume The amount of ttme tt takes 
for one untt volume to flow from one segment to the next is defined to be one time 
untt Thus. tn a ttme interval dt, an amount of eluent 4t flows from each segment to 
the next 

Suppose we have I’ segments (numbered 0. 1. , r - 1) Looking at some 
molecule of sample as tt mobes through the segments. we see that. 

(1) It spends a random amount of time. D,, tn segment 1. 
(2) These “delay ttmes”, D,. are Independent, identtcally dtstrtbuted random 

variables 
r-1 

(3) The extt time for the molecule is 1 D,. 
1-O 

(4) The TS the molecule IS tn at trme t, *V(t), IS given by 

n 1 n 

)V(t) = minimum value of 17 such that 
c 

D, < t < 
c I 

D, 

,=a ,=a 

(9) 

(Note the above D, IS not to be confused wtth the one used tn the dtscrete flow model.) 
Clearly. our first task must be to determtne the dtstrtbutton of the random 

variables, D,. To do this we look at a single segment. We wish to calculate the 
probabtltty that a molecule (which is tn thts segment) leaves the segment tn the next 
time Interval 4t (dt ts assumed to be small) For thts to happen tt IS necessary that the 
molecule (a) be tn the mobile phase. and (b) be tn that parttcular 4t volume of eluent 
that ts lea\tng Thts probabtltty IS 

ihts resuit IS chrdctenstic oi‘an CX'~G~~IILI~I u%u tl,llL wlul pzIamLLL~ ,: = ~~~~ 

(ref 14) The density of such a random variable ts i.e ‘I (t 3 0) 
1 t k 

Wtth thts ptece of tnformatton together with some standard results of prob- 
abtltty theory, we can now determtne the extt ttme denstty and the probabtltty dtstrt- 
button of the molecules’ posttton at ttme t First, the dtstrtbutton of the extt time IS the 
dtstrtbutton of the sum of r independent tdenttcally dtstrtbuted exponenttal random 
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variables It is known that this distrlbutlon is a gamma distrlbutron with parameters r 
and i (ref 14) The density function IS 

1 I 

f(f) = w r-1 ,-A7 

(1 - I)! 
(t 3 0) 

Now we use the fact that the mean and variance of our exponential random variables 
are 1, x and 1: 2’ respectively Let Tdenote the exit time [which will have the density f(t) 
above]. Then. 

r-1 

E(T) = E (C 4) = y1 E(D,) = ; = r(1 + k) 

i-0 1 = 0 

(10) 

r-l r-1 

Vu(T) = Var(C ~9,) = 1 Var(o,) = $ = r(l + 12)’ (11) 

170 ,=o 

Once agam we can apply the central limit theorem to conclude that the distrlbutlon of 
T IS asymptotically normal (as r + x ) 

It will be noted that the mean exit time (eqn. 10) IS the same for both models 
but that the variance of the exit peak is r( 1 + h-)2 for the continuous flow model and 
rk( 1 t k) for the discrete flow model. 

To obtain the distrlbutlon of the position of sample molecules at time t. 
we note from eqn. 9 that D, bemg identically distributed random variables makes N(t) 
a Poisson process with parameter i. (ref. 15) [for the definition of N(t), see eqn. 91: 

(12) 

fork = O,l, ., I - I 
It can be shown by a slightly more sophlstrcated apphcatlon of the central limit 

theorem that the dlstnbutlon of N(t) IS asymptotically normal (as t 4 -L) (this result 
also requn-es that r be large enough that the molecule ~111 not yet have left the column 
at values of t large enough to yield a good normal approximation) 

5 THEORETICAL PLATE NUMBFRS IN THE TWO MODELS 

The theoretical plate number, N. and the effective theoretical plate number, 

JV,W are of course widely used m chromatography. These may be defined by 

N = [Qnl' 
Vat-( 77 

(13) 

and 

[E(T) - kllZ 
Nelf = ~--~ 

Var( r) 
(14) 
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where t, IS the exit time for a non-sorbed substance and E(r) IS the expected exit time 
for a sample substance. 

We can use the result we have obtained to calculate these quantities for both 
the discrete flow and contmuous flow models For the drscrete flow mode: 

N= 
[E’(T)12 _ [r(l + k)12 l+k 

Var( T) /k(l + k) = I^ i > k 

N 

rff 
= [E(T) - 0 = (rky 

VW r) 

For the continuous flow model: 

N = [-WT)12 [r(l + k112 
-=-,.(I +k)2 =’ Var( T) 

N 

sff 
= l&T) - t,12 

Var( T) 

(15) 

(16) 

(17) 

(18) 

Thus, only in one of the four cases IS the plate number result Independent of k 

6 SOME CONSEQUENCES OF THE DISCRETE FLOW MODEL 

In the dtscrete flow model the mean and variance of the locatlon, X(n), are 
expressed m units mvolving TS (here theoretical segments indicate the positron of the 
molecule). On the other hand, the mean and variance of the exit time, T, must be 
expressed m time units. The fundamental time unit IS the time needed for eluent to 
flow from one TS to the next. We wish to show that simple umt conversions can be 
used to relate results for peak locations to those for peak exit times. We define T, as 
the time when a sample molecule enters thejth theoretical segments (note that T,. = 
T). Reasonmg by analogy with eqns. 6 and 7, we have E’( T,) = I( 1 + k) and Var( T,) 
= /k( 1 + k) Using eqns 3 and 4 to calculate 4X(n)] and Var[X(n)] when II z 

A1 + k) 

1 
E[X(n)] = j( 1 + k) ~ = 

l+k ’ 

Var[X(n)] = j( 1 + k) . &7 = 1 T& 

(19) 

(20) 

Now we see that E’( r,) = E’[X(n)]( 1 + k) and Var( T,) = Var[X(n)]( 1 + k)2. In other 
words, we can convert between means and variances of position and exit ttme random 
variables simply by multlplymg by the conversion fact (1 + k) for the means and 
(1 t k)’ for the variances. 
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Counter-current chromatography (CCC) is a good system for illustrating the 
practical results of the equations derived. In CCC the solute molecules attam equllib- 
rium between the mobile and stationary phases prior to each transfer to the next tube 
m the series Thus, each tube IS by definition a theoretical plate, according to the plate 
theory of chromatography, or a theoretical segment m our nomenclature. It has been 
recognized by several authors that CCC also 1s a reasonable model for explamlng 
elutlon behavior in column chromatography, provided that axial diffusion, multl- 
paths and other factors that contribute to peak broadenmg m column chromatogra- 
phy, but which are non-existent m CCC, are also taken into account. This ~111 be 
done m the next section, but first let us consider only the peak broadening resulting 
from inter-phase broadening effects, with CCC as a model. 

Fig. 1 shows the distribution of a solute along the series of 36 tubes (p. = 36) 
m a CCC apparatus as a function of the number of transfers, n The peaks were 
plotted for k = 1.5 from eqn. 5 with the aid of a programmable calculator. Note that 
the peak has become well defined and approximately Gaussian after only a few 
transfers and that the peak broadens and decreases m height as it moves along the 
series of tubes. Fig. 2 shows the same peak, calculated from eqn. 8, as it leaves the 
CCC apparatus and passes through an lmagmary detector. The peak that was sym- 
metrical in Its positlon dlstrlbutlon of molecules now has a distinct tall The expla- 
nation for this 1s that the latter part of the peak continues to broaden after the earlier 
portions have left the “column”. This effect 1s of some sigmficance because it demon- 
strates that in columns of low “performance” some peak tailing 1s predicted mathe- 
matlcally and IS not necessarily caused by a poorly functioning column. 

The taihng of an exit peak decreases and the peak becomes more Gaussian as 
the number of theoretical segments (r) m a column becomes larger The tallmg, or 
skewness, of a peak 1s predicted by the following equation: 

Coefficient of skewness = 1 
2k2 -I- 3k i I 

& (k + 1)2[k/(k + l)]“’ 
(21) 

(see ref. 14 for a defimtlon of the coefficient of skewness). The second term in this 
equation has a value of just over 2 from k = 1 to k = 10, but increases rapidly as the 
value of k becomes very small. 

It 1s well known that later eluting peaks are much broader than those with 
shorter retention times. From the exit peak variance (eqn 7) it will be seen that the 

peak width (40) 1s proportional to m and thus Increases m approximately 
linear fashion with k (except at very low values of k). It is interesting to compare this 
with the way the width of a peak still on a column varies with k. This may be done by 
calculating the peak widths when the peak maximum is located m the Ith theoretical 
segment m a column containing r theoretical segments. We shall choose J’ to be near 
the end of the column, say j = 0 9 r. From eqn. 20 for the variance of a position peak 

yk “’ 
we see that40 = 4 ___ 

L 1 l+k 
In Table 1 we see that the widths of peaks centered atj 

vary only shghtly with increasing k, much less than the exit peaks (of course it takes 
longer for peaks of higher k to arrive at]). The reason that elution peaks are so much 
broader when k IS high IS that such peaks are movmg more slowly and take longer to 
pass through the detector. 
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Fig 1 PosItIon peaks for a compound with k = I 5 m a CCC apparatus of 36 tubes after n transfers 

Exit peaks calculated for the discrete flow model usmg eqn 8 emphasize a 
major drawback of the plate theory that has been so widely used m chromatography. 
In no case does either Nor Neff (calculated from eqns 13 and 14) agree with the actual 
number of plates (tubes) rn CCC, which IS P. The correct values for N and N,,, are 
given by eqns. 15 and 16, respectively. Fig. 3 shows the expected values of N and Nelf 
as a function of k, calculated from eqns. 15 and 16 for a CCC apparatus where r = 

1000 The values of N are very high as k -+ 0 and become meanmgless as a measure of 

separating power. Similarly, a single value of H (height equivalent to a theoretical 
plate) IS an ambiguous expresston of column efficiency when H varies so widely for 
different peaks. 

The apphcatlon of e’qns 5 and 8 to CCC is well documented and there would 
seem to be little doubt as to then- correctness It is logical that eqns. 3-8 should apply 
also to column chromatography An exammation of actual column chromatograms IS 
now m order, to determme whether the equations do or do not apply. 

Fig 2 Exit peak for a compound with k = 1.5 from a CCC apparatus of 36 tubes (n = number of 

transfers) 
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TABLE 1 

WIDTHS (4~) OF POSITION AND EXIT PEAKS AS A FUNCTIOU OF k 

k 

01 36 
0.2 49 
04 64 

06 74 

08 80 

10 85 

1 5 93 

20 98 
30 104 
40 107 
60 Ill 
80 113 

10 0 114 
I 5 0 116 

42 
62 
95 

124 

152 

179 
245 

310 
438 
566 
820 

1073 

1327 
1960 

25 
37 

57 
14 

91 

10 7 
14.7 

18.6 
26 3 
33 9 
49 2 
64 4 

79 6 
1176 

jk I2 
* Calculated from 4~ = 4 ~ 

L 1 1+k ’ 
where 1 = 900 

** Cdlcuidted from 4a = 4[rk(l + k)]’ ‘. where r = 1000. 
*** Calculated from the previous column for an eluent flow-rate of 16 67 TSisec 

2400 

N or 

Netf 
2000 

k 

Fig. 3 Expected values of Y and N,,, for an exit peak from n CCC apparatus where I = 1000 
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7 CALCULATION OF PLATE NUMBERS FROM CHROMATOGRAPHIC DATA 

When working with actual data for column chromatography, it IS necessary to 
consider the various dynamic effects that contribute to the wrdth of chromatographic 
peaks. The major effect almost always IS what IS termed “resrstance to mass transfer”, 
which we shall call “mter-phase broademng”. Addrtronal peak broadening occurs 
through axial diffusion, multi-paths (in packed columns) and extra-column effects 
such as broadenmg m fittmgs, connectmg tubing and the detector. InJectron band 
broadening IS apt to be stgmficant also. as was recognized by Keulemans as early as 
19591”*“. 

If we assume that these broadening effects act independently of one another, 
the measured peak vartance is the sum of the vartances of the indrvidual broadening 
effects For capillary GC columns (where there IS no multi-path effect), we can write 

(22) 

where ec stands for extra column, d for diffusron and rp for Inter-phase. The approach 
taken will be first to estimate the peak variance resulting from axial drffusron and to 
subtract thus from the measured peak vat-lance Then a plate number representrng the 
Inter-phase broadening can be calculated from the slope of a plot of the remammg 
peak variance against k( 1 + k), which comes from the peak variance in the discrete 
model, rk(1 + k). 

7.1. Diffkuon hroadenang, ci 

The effect of drffusron on plate height, H, IS given by the Van Deemter equa- 
B 

tton. which has the form, H = u + Cu. where B is the drffusron term. z/ IS the linear 

column flow-rate and C is the resistance to mass transfer. In this equation, B = 2D,, 

where D, is the axial drffuslon coefficrent m the gas phase (cm’jsec). 
According to the classical defimtlon of H and N, the drffusron contrlbutron to 

H 1s converted to 0: as follows 

H+ 
L 0; 

[to(l + k)]’ = ? 

2 _ 25 &? (1 + k)’ 
cd-- ---= 

2D,L(l + kJ2 
u L u3 

(23) 

where L IS the column length (cm) and u IS the linear flow-rate (cmjsec). 
One way to estrmate the diffusion broadening vartance IS to run a chromato- 

gram at two dtfferent flow-rates Dtffusion broadenmg varres as the mverse cube of 
the flow velocrty, but inter-phase broadening varres only as the inverse of the flow 
velocrty. This difference allows us to solve for diffusion broademng by solving two 
srmultaneous equations (the dependence of the broadening on flow velocrty ~111 be 
consrdered m the next sectron) 

Although this method works, a more convement way IS to use the method for 



206 J S FRITZ. D. M SCOTT 

esttmating gaseous dtffusron coefficients proposed by Gtddings”: 

D, (for A,B) = 
PE4rJ’ ,3 + (&l’J1 ‘312 

(25) 

where M, and A4, are the molecular werghts of the carrier gas and a chromatographt- 
tally separated substance, respectively, T is the temperature (“K) p is the pressure 
(bar) and V, are empirically determined values for various atoms and groups makmg 
up the carrier gas and the separated chemical. Glddings and co-workers obtained 
excellent agreement (usually to wtthm f 5 ‘I;) between D, values calculated this way 
and experimentally reported values”. 

As will be shown by an actual example, we found that thts method grves 
reasonable results when apphed to column chromatography. Although the values of 
D, decrease as one proceeds to mcreasmgly htgher members of a homologous serres, 
the fact that the D, values are multrplied by (1 + k)’ means that 0: (m set’) actually 
increases as one proceeds to later eluting peaks. Desptte differences in indtvldual D, 
values, a lmear regression plot of calculated CJ~ IWSII.S (1 + k)2 is generally obtamed 
wtth a htgh correlation coefficient. 

The general approach taken is to subtract cri from the measured variance of 
each peak and to plot the difference. &, agamst one of the expressions for stochastic 

peak variance derived earlier. Thts should give a straight lure with a slope related to a 
plate number and an intercept indtcattve of extra-column peak variance. 

However. one question IS whether rk(1 + k) in the discrete flow model or 
r( 1 + k)’ in the continuous flow model is correct. For many plots, both give straight 
lines by linear regression. This is because the ratio of( 1 + k)*/k( 1 + k) does not change 
greatly wtth k at higher k values (say 2.5515) and also that lmear regresston IS insensr- 
ttve to points of lower k that might not be on a straight-lure plot. 

However, C values calculated from the Golay equation where several of the k 
values are quote low shows that slopes of mdivrdual pomts (J~/_u for each point) are 
nearly constant for plots of o-’ Iversus k(1 + k) but they vary considerably for the 
same k values when rs2 1s plotted \versus (1 + kj2 This supports the contention that 
the discrete flow is correct for column chromatography and that it 1s correct to plot a2 
versus k( 1 + k) for Inter-phase broadenmg. 

Using eqn 7 and making use of the conversron factor tO:‘r (sec/TS) it can be 
shown that 

ufp = &I2 k(l + k) L2 k(1 + k) 
= 

1 u2r 
(26) 

where L 1s the column length (cm), u 1s the linear flow-rate (cm/set) and I’ IS the 
number of theoretical segments m the column at the flow-rate employed. However, 
we know that the plate number, r, IS proporttonal to the rectprocal of linear flow-rate. 
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Introducmg a plate number, Y’, which IS the number of theoretical segments in a 
column at 24 = lcm/sec 

,g _ I?* k(l + k) 
i 

u 1.’ (27) 

This equation for peak variance due to stochastic broadenmg was tested on data 
published by Kaiser and Rieder l9 for the separation of alkanes and aliphatic esters by 
capillary column GC at SIX different flow-rates. First, the peak variance resulting 
from axial dlffuslon was subtracted from the measured peak variance as outlined 
above. Then the remaining variance (I&) was plotted against k( 1 + k) and the plate 
number r’ calculated from the slope of the straight-lme plot obtained. A sample 
calculation is shown m Table 2. The results are summarized m Table 3, which shows a 
constant value for r’ within a reasonable experimental error The plate number, I’, at 
any flow-rate can be calculated simply by dlvldmg r’ by U. 

The plate number, r’, seems to be a convenient way of evaluatmg and compar- 
mg column performances It IS computed easily from measured peak variances using 
lmear regression and IS independent of peak capacity factor. It 1s also independent of 
axial diffusion effects. This IS good because diffusion really has nothing to do with the 
separating ability of a column other than contrlbutmg to the broadening of peaks. In 
some respects r’ 1s similar to the C term m the Van Deemter and Golay equations. 
However, C 1s different for each peak whereas r’ 1s not. It would appear that I.’ can be 
more easily and accurately measured from ordinary chromatographic data than can 
C. 

At a fixed flow-rate it 1s convenient to obtain a plate number that includes 

TABLE 2 

SAMPLE DATA FROM KAISER AND REDIER19 FOR lo = 146 see SHOWING AXIAL DIFFU- 

SION CONTRIBUTION TO PEAK VARIANCE 

gz (dtffuslon) was calculated from eqn. 24 usmg D, values calculated from eqn 25 at an estimated pressure 

of 1 2 bar The values of the gaseous &T&Ion coeficlent (D,) used ranged from 0 0795 for C, to 0 0653 for 

C 13 _ 

Compoun& k 0’ (meuswed) o2 (drffuvmJ CT2 (!X?tJ 
lW’) Isec’) Isec ‘I 

_ ~~ - 

C9 1 26 1 52 0 63 0 88 
E, 1 45 1 96 0 74 I 22 
C 10 2.38 4 15 I 33 2 82 
E 10 2 75 4 88 1 64 3.24 

C,, 451 10 41 3 38 7 03 

C:: E 5 8 23 55 35 13 34 34 4 9 65 32 
9 

25 02 69 
E LZ 9 94 43 X8 12 66 31 22 
C 13 16.2 112 7 30 0 82 7 

* C = n-alkane and carbon number; E = alkane ester and carbon number 
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TABLE 3 

PLATE NUMBER (r’) CALCULATED FROM DATA OF KAISER AND RIEDERL9 AFTER SUB- 

TRACTING DIFFUSION PEAK VARIANCE 

to itecj II icwwc, r lOi (2-S) 

276 I 25 9 19 

1544 12 95 10 40 

146 0 13 70 9 86 

106 8 18 73 10 71 

88 2 22 68 9 53 

87 4 22 88 9 82 

Average- 9.92 (F = 0.56) 

broademng resulting from axial dtffusion as well as Inter-phase peak broadening. 
This can be done simply by measuring the variance of each of the chromatographrc 
peaks and plotting measured c2 agamst peak varrance, k( 1 + k). The apparent plate 
number, I’, is obtained from the slope of the linear plot. The intercept 1s indicative of 
the extra-column peak broadening plus the drffusron broadenmg of a non-sorbed or a 
very slightly sorbed peak. 

Thts simple plotting method works because a plot of pi versus (1 + k)’ IS linear 
and a plot of 0: IW.W.F k(l + k) is almost linear. The flow-rates that are normally 
used m chromatography sufficiently fast that drffusion contrrbutton to peak wrdth 
usually is not very substantial. Thus, any slight non-linearity of the 0: part of the plot 
is msigmficant. 

The equation relating measured peak variance to I and k 1s derived by convert- 

mg the peak variance, rk(1 + k), from TS units to set’ by dtvlding ” (to IS the 
oz 

hold-up time}: 

cJ2 - 
rk(1 + k) 

IP - 
r2/OJ2 

= !$ [k(l + k)] (28) 

where ~7:~ and to are now in minutes or seconds Substrtutron into eqn. 22 gives 

g2 _ (toI - __. [k(l + k)] + a& 
P 

where 6, t, and oec are m minutes or seconds This equation predicts that a plot of (r2 
wsus k( 1 + k) for the various peaks m a chromatogram will give a strarght line with 
slope (tcJ2jr and intercept = aL 

The vahdtty of eqn. 29 was tested on a number of actual chromatograms 
Usually the chart speed of the recorder was 410 cm/mm to facrhtate measurement of 
the peak widths wtth a ruler and magnifymg lens. The peak variance was obtained 

from the peak width at half of its hetght, w IZ (where D = 2.355 IL’~ 2) m order to 
mmtmrze the effect of any tailing m the lower part of the peak. 

Data for five chromatographlc separations are summarized m Table 4. Chro- 
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TABLE 4 

CALCULATION OF i FROM CHROMATOGRAPHIC DATA 

Chrornatogram Peak k k(l f k) (T’ Re~ulrs 

(A) n-Alkanes C7 

by captlldry C, 

GC” C, 
t, = 9 72 mm c,, 
Oven at 130 C C,, 

C 1* 
C 13 

(B) n-Alkanes C, 

0.14 0 16 
0.8 1 44 
14 3.36 
23 7 59 
39 19 I 
65 48 8 

10 8 127 4 

0.97 I 91 

0 00032 (mm’) 

0 00090 

0 00187 
0.00380 

0 0096 
0 0249 
0 0661 

Correlation coefficient = 0 9999 
0; = 0 00001 

Slope = 0 00518 
i = 182,500 

by capillary C, 

GC at two C,, 
dtfferent C,, 
temperatures* C, 
First set. C, 
WC, C 10 
second set C,, 
7O’C 
t, = 1 20 mm 

231 7 65 
5 42 34 8 

1233 1644 
0 60 0 96 
I 44 3 51 
3 26 13 9 
7 19 58 9 

462 10m5 
(mm’) 

14 1 low 

628 lo-’ 
277.10m5 

406 10-s 

721 10m5 

260 loms 
101-10~s 

Correlatton coefficient = 0 9999 
0; = 227 lO-5 
Slope = 1 676 10-s 
r = 85.900 

(C) Carboxyhc Acetic 
acids by Propiomc 
packed-column Isobutyrtc 
cc**. n-Butyrtc 
I, = 20mm Isovalenc 

n-Valerie 

0.0451 (mm’) 
0.0649 
0.0909 

0 1303 
0.2426 
0.4057 

Correlation coefficient = 0.9998 
cr; = 00348 
Slope = 000196 
, = 2040 

(D) Alkah Lif 
metal tons Na+ 
by ton NH: 
exchange*** K + 

50-p] sample Rb’ 

t, = 42 5 set 

18 5.04 
34 150 
50 30 0 
6 55 49.4 

97 104 
13 3 190 

4 35 23 26 
6 10 43 2 
8 47 80.1 

II 45 142.6 

130 182.0 

51 8 (se?) 

83 0 
148 0 
229 8 

295 8 

Correlation coefficient = 0.9988 
0; = 190 

Slope = I 514 
f = 1190 

(E) Alkah Ll’ 
metals by Na’ 
ion exchange NH: 
20-p] sample K+ 
r0 = 39 set Rb- 

(F) Pesticides Sewn 
by hqmd Prolate 
chromatog- Ruelene 
raphy to = Coral 
0 445 mm B Dursban 

tram- 
Permathrm 

L’IT- 

Permathrm 

4.90 28.88 54 6 (se?) 
6 54 49.30 62 4 
9 44 98.47 1172 

12 51 169.0 200 0 
14 43 222.7 253 6 

Correlatton coeffictent = 0.9979 
0; = 16.3 
Slope = I 067 
, = 1430 

0 955 1 87 0 000357 (mm’) Correlation coeffictent = 0.9996 
116 250 0 000391 cr: = 2 II 1om4 
I 72 4 67 0 000786 Slope = 0 7445 10M4 
I .94 5 72 0 000612 , = 2660 
3.45 15 35 0 001356 
581 39 55 0 003236 

6 80 5301 0 004100 

* J Kaczwnsky, unpubhshed results (1981) 

** Data from chromatogram m an advertismg brochure (198 I) 
*** G Sevemch. unpubhshed results (1981) 

e L Rice, unpublrshed results (1981 I 



210 J. S. FRITZ, D. M SCOTT 

N 

_o 
x 

N 
b 

2- 

‘0 I 20 I I 40 I I1 60 I 80 I I 100 I I 120 I I 140 I I 160 I I 180 I. 

Fig 4. Lmear regrewon plot for chromatogram C in Table 2 
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matogram A IS unique among those tested in that the intercept, of_ was essentially 
zero. Of course there is some error in measuring k and 0’ for each peak, but the 
equipment and technique used were both known to be excellent. 

The data for B in Table 4 are for two chromatograms run at different tempera- 
tures, yet all eight points he on a straight line within reasonable experimental error. 
The intercept, &, IS significant m this instance and constitutes nearly 50”; of the 
measured variance of the first C, peak. Note that the early peaks are far more affected 
by oft than the latter ones if the actual peak widths (4 g) are compared. 

Chromatogram C was run on a packed GC column and shows a far greater a!& 
relative to the measured peak vartances than the chromatograms or capillary col- 
umns. Fig. 4 confirms that the experimental points actually do fall on a stratght lme 
when plotted according to eqn. 29 It is interesting to calculate the traditional plate 
number, N, before and after subtraction of a& from c2 for each peak. Before any 
correctton IS applied, N increases from peaks 1 to 6: N = 695, 1190, 1580, 1750. 1890, 
2020 After subtracting o,‘, from the variance of each peak, N decreases from peaks 1 
to 6. N = 3050, 2570, 2390, 2200, 2200 

Chromatograms D and E are for an ion-exchange separation of alkah metal 
ions. Again, the data support the validity of eqn. 28 even though some of the peaks 
were tailed, and accurate measurement of peak width was difficult. The intercept, o&, 
IS smaller and the value of r is larger when the sample volume is reduced from 50 to 20 

Pl. 
Chromatogram F m Table 4 was obtained with a commercial liquid chromato- 

graph with a 10 cm x 4.6 mm I D. column. The large value for r confirmed the 
excellent separating ability of the column, but the additional broadening represented 
by g& was large. Much of this can be attributed to the use of a small “guard” column 
filled with a coarser reversed-phase absorbent than that used in the chromatographic 
column Subsequent replacement of the guard column with a pre-column of slightly 
smaller diameter packed with lo-pm absorbent reduced oft by almost 50 %. 

While there is no direct proof that the intercept, cr$, of our linear regression 
analysts gives an accurate measure of the sum of m-column and extra-column broad- 
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ening that applied equally to all peaks, the underlymg principle does appear sound 
and the results obtained from actual data are reasonable The Idea of linear regression 
analysts of chromatographic data originated with Kaiser and co-workersrs2’, who 
plotted 11’~ ,2 against k. They obtained the “real” number of theoretical plates from the 
slope and an mdtcatton of the extra-column peak broadening from the intercept We 
think that the concept pioneered by Kaiser and co-workers IS a valuable one but that 
then method of plotting the data IS not completely correct. According to Gutochon22, 
a plot of u’, 2 ver’sz~~ k is not linear at all values of k and the intercept of such a plot 
underestimates the “extra-column” peak broadening 

Smuts et ~1.~” proposed a plot of peak variance against (1 + /c)~. although the 
purpose of thts work was dtfferent from ours. This type of plot would follow if the 
continuous flow model [where the peak variance is (1 + k)‘] IS correct for column 
chromatography. However, Smuts et a1.24 stated that such a plot IS not completely 
lmear Plots of c2 rersus (1 + k)2 for the data m Table 2 also did not give a completely 
straight lme, although the intercept was often not greatly different from that obtained 
when using the discrete flow model. All of our results suggest that the discrete flow 
model is better for column chromatography. 

8 SUMMARY 

The classtcal plate theory, and ortgmal extensions of it, are derived by using 
simple concepts from the theory of probability and statistics. Each molecule of a 
sample chemical substance is examined separately and its motion through the column 
1s described as a stochastic process Equations for calculating the mean and variance of 
chromatographtc peaks as a function of capacity factor. k. are given for a discrete 
flow model and a continuous flow model. The variance of position and exit 
peaks as a function of capacity factor 1s compared and a sample relattonship between 
the, two is derived. The expressions for the mean and variance of chromatographic 
peaks are used to define plate numbers that describe the separating ability of a 
chromatographrc column under fixed conditions and which. unlike the classical 
plate numbers N and Nef,. are independent of capacity factor. k In capillary 
column GC a method is given for determining diffuston coeffictents m the gaseous 
phase that makes tt possible to subtract the contrtbutton to peak variance resultmg 
from axial dtffusion. When the remaining vartance is plotted against k( 1 + k), linear 
regression Indicates a straight line with an excellent correlation coefficient and an 
intercept that’ IS mdtcattve of extra-column peak broadening. A plate number, r’, is 
computed from the slope that IS independent of k and can be used to calculate a plate 
number, r, for any given lmear flow-rate Another simple plotting method gives a 
plate number that includes the multi-path contrtbutton to peak broadenmg for 
packed columns. Numerous examples are given to demonstrate the applicability of 
these simple concepts to actual chromatographlc data. 
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