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1. INTRODUCTION

The theoretical plate model continues to enjoy widespread popularity as a
description of the behavior of chromatographic peaks. The plate model is generally
attributed to Martin and Synge!, but has been developed further and modified by
Glueckauf?, Mayer and Tompkins® and others. Giddings* gave an excellent discus-
sion of the plate theory and its limitations.

In the plate theory of chromatography, a column is divided into a number of
imaginary sections called plates. In each plate it is assumed that a sample substance is
partitioned between the stationary and mobile phases and that equilibrium has been
attained. Then the mobile phase in each plate moves forward to the next plate,
carrying the sample substance in the mobile phase forward exactly one plate. A new
partitioning occurs simultaneously in each plate, and it again is assumed that equilib-
rium is attained. This process is repeated many times, until sample constituents move
along and off the column at different rates and thus are separated.

The number of imaginary sections in a column is generally called the number
of theoretical plates, or theoretical plate number, and is designated as N (or n). The
numerical value of N for any given column length is maximized by using very small
spheres of uniform diameter, thinly coated with a stationary phase and carefully
packed, as the column stationary phase. Factors such as column dimensions and
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fittings and proper eluent flow-rate also affect the value of N and hence the separation
efficiency of the column

There 1s no convenient way of measuring the intrinsic value of N; it must be
calculated from measurable parameters, namely the retention time (or volume) of a
peak and the peak width (or ¢ which 1s a function of peak width). The defining
equation for this calculation 1s

P2 2
N=16|—) = —
(n) =

where 7 is the peak retention time, w 1s the peak width at its base (1n the same units as
1) and 6° 1s the vanance of the peak width.

Some chromatographers prefer to use the number of effective theoretical plates
as a measure of the separation power of a column

) [ — 1\~ 1)t
Nere = 16(”.) =

where 7, 1s the retention time of a non-sorbed substance, or the “dead time™ of the
column. As early as 1959 Purnell®*® noted that N, (for which he used S. rather than
N} 1s eritical in determiming the separation ability of a chromatographic column He
found that the resolution of alkanes was mconsistent with the observed value of N
when the retention volumes are very small Widely used equations show that resolu-
tion of chromatographic peaks 1s proportional to the number of effective theoretical
plates

The plate theory of chromatography has been criticized as lacking in physical
reality because eluent flow n actual columns obviously 1s continuous and not a
discontinuous flow from one plate to the next as portrayed by the plate theory. It 1s
debatable whether this objection 1s valid because any theory that gives results con-
sistent with experimental behavior would be useful despite differences in the actual
and theoretical mechanisms

Giddings* criticized the plate model on several counts and concluded that 1t
“fails mm the most important test of all  the very practical matter of predicting zone
dispersion as a function of the numerous variables open to manipulation by the
mvestigator” These variables include the particle size of the sohd support. thickness
of stationary phase coating, eluent flow-rate and diffusion coefficients in the
stationary and mobile phases.

The rate theory of chromatography has tended to supplement, rather than
replace, the plate theory. The Van Deemter equation” describes the effects of eluent
flow-rate, longitudinal diffusion and multi-path effects within the column on plate
height, H (H = column length, divided by .V) For capillary columns n gas chroma-
tography, the Golay equation® shows how diffusion coefficients, thickness of
stationary phase coating. column diameter, flow-rate. etc.. contribute to plate height,
H Giddings* has made major contributions to the dynamics of chromatography and
has shown the effect of many experimental parameters on plate height in both gas
(GC) and hquid chromatography (LC).

Although a theoretical value for H can be calculated from the diffusion coef-
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ficients and other parameters contained 1n rate equations, the calculations often are
not very accurate. For example. Desty and Goldup® compared experimental and
calculated values for terms 1n the Golay equation and found good agreement for the
B term but that the experimental C term was 2-6 tumes the calculated value. The
major value of rate equations 1s 1n predicting in a qualitative manner (or semi-quanti-
tative at best) how a change n particle size, for example. will affect chromatographic
behavior.

Most chromatographers still rely on only two actual measurements to evaluate
performance peak retention time and peak width The discussion 1n a recent book on
hiquid chromatography'® is fairly typical of the way m which the dynamics of chro-
matography currently are handled. The authors consider that the theoretical plate
number, N, of various chromatographic peaks 1s approximately constant and there-
fore they consider both N and H as measures of chromatographic effictency. Thus, the
rate theory and plate theory are 1n a way still tied together.

There seems to be some confusion as to how N varies (or does not vary) as the
capacity factor, k. changes (recall that retention time of a peak varies directly with 1ts
capacity factor). While Snyder and Kirkland consider that NV 1s approximately con-
stant with &k, Grob!! states that & tends to increase with higher & and Kaiser'?
indicates that V decreases as k becomes larger Jennings'? provides a nice experi-
mental answer to this question Careful gas chromatographic separation of n-alkanes
on a capillary column shows that N 1s very high at low values of £ and decreases with
mcreasing k. rapidly at first when & 1s small. and then more slowly at larger k values,
eventually approaching an asymptotic value. Their data show that n . starts at or
near zero and increases as & becomes larger N appears to approach the same
asymptotic values as N The change in NV or N with & 1s particularly great at &
values below 1 0

In this paper we derive simple statistical expressions for calculating the mean
and vanance of chromatographic peaks that are still on a column (position peaks)
and for these peaks as they leave the column (exit peaks). The variances of position
and exit peaks as a function of capacity factor, k, are compared We also show how
the major contributions to peak broadening in capillary column GC can be de-
termined at any k value using gaseous diffusion coefficients computed from empiri-
cally determined constants for the atoms and chemical groups making up the carrier
gas and the compounds separated. First, the peak varnance contributions resulting
from axial diffusion are calculated from a modified form of the Van Deemter equa-
tion and are subtracted from the measured peak variances. Then the rematming vari-
ance of each peak 1s plotted against a function of the capacity factor, & A plate
number 1s calculated from the slope of this linear plot which 1s independent of & and
thus provides an excellent measure of performance for a column operating under
spectfied. fixed conditions. The intercept of this plot provides an estimate of the extra-
column peak broadening of the chromatographic system.

For both GC and LC columns run at a single flow-rate. a similar approach 1s
outhined that gives another plate number that also 1s independent of &k but which
includes any peak broadening effects resulting from axial diffusion This plate number
18 also useful in describing the separating alility of a column under fixed conditions
and n predicting the variance of peaks of different & values from those in the test
chromatogram
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The authors feel that the material presented here will correct some of the
confusion or misconceptions that many chromatographers seem to have about plate
theory. We also think that the approach presented is a simple but practical way of
handling some of the dynamic effects that determine the variance of chromatographic
peaks.

2. PLATE MODELS

Using a statistical approach, we shall study two classical models falling into the
category of plate theories: the first is the discrete flow model and the second the
continuous flow model. The characteristic feature of a plate model is that the chroma-
tographic column is considered to be divided into a sequence of disjoint segments, or
“plates”. In our discussion, we shall refer to these as theoretical segments (ab-
breviated to TS). The sample molecules proceed from one TS to the next until they
leave the last segment and exit from the column.

The purpose here is to derive statistical equations for the mean and variance of
a peak that is still on the column (a position peak), and for a peak leaving the column
(an exit peak); this will be done for each of the plate models. The statistical approach
also leads to equations that describe the entire shape of position and exit peaks,
although such equations for counter-current chromatography (CCC) are already
available in the literature.

3. DISCRETE FLOW MODEL

The assumptions of the discrete flow plate model are (1) the entire mobile
phase moves from each segment to the next at the end of discrete equal time intervals
and (2) the sample chemical remains in equilibrium between the stationary and the
mobile phases. In our analysis we shall study the movement of a single molecule
through the column. In this form the equilibrium condition is expressed by the con-
dition that the probability that the molecule is in the mobile phase is p, while the

probability it is in the stationary phaseis | — p. Thusp = . where k is the well

1
Sehs
known capacity factor. Thus the position of the molecule is random and depends
crucially on the random ““decisions’ on whether to stick in the stationary phase or be
free in the mobile phase during a given time unit. We shall measure the passage of
time by the number of transfers (n) of the mobile phase that have occurred. We shall
measure the location of the molecule by noting which segment it is in. Two quantities
are of particular interest: one is the probability distribution of the position of the
particle at time n, and the other the probability distribution of the time when the
molecule leaves the column (the exit time).

We shall first examine the position distribution. In each time period the particle
either goes to the next segment of stays in its current segment. The first event takes
place with probability p and the second with probability | — p. Which of these two
events actually occurs in the kth time interval can be represented by the random
variable

B - 1 with probability p
* |0 with probability I — p
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Random variables of this type are known as “Bernoulh™ random variables'*. If we
assume that our molecule starts in segment zero at time zero, then its position at time
n [denoted by X(n)] 1s

X(n) = "2 B,
A=1

As the B;s are random, X(n) 1s also random The Bernoulli random variables in the
sum are all independent and identically distributed with mean p and variance p(1 — p)
It follows that the expected value of X(n) 15

n n

ELX (] = E Z Bk) - Z E(B) = np (1)

k=1 k=1

and the vanance of X(n) 1s

h n

Var[X(n)] = Var( Z Bk) = z Var(B,) = np(1 — p) (2)

k=1 k-1

These could also be written as

k
Var[X(n)] = n I:(TA—WLN—/()E] (4)

The central limit theorem of probability'* tells us that X(»)1s asymptotically normal,
i e . the distribution of X(n) approaches closer and closer to a normal, or Gaussian,
distribution as n increases (n ~ 30 is usually considered large enough for this to be a
good approximation).

Probabihty theory will provide even more detailed information An elementary
result tells us that the sum of # independent identically distributed Bernoulli random
variables with parameter p has a binomial distribution with parameters » and p (ref
14) It follows that

_ n!

PiX(tn) =} =) p/ (1 —py = g P
n' A

T kY

where 7 1s some particular TS 1n the column and » 1s the number of transfers, or the
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number of time intervals that have elapsed for a substance of capacity factor k Eqn. 5
can be used to calculate the distribution of molecules along the various TS n a
column by mserting various values of y into the equation The result calculated will be
the fraction of the molecules in each theoretical segment
Next we examine the problem of determining the exit time distribution If we
r—1

denote the exit time by 7, then 7 =+ + Y D, In this equation r is the number of
k=0

theoretical segments m the column and therefore 1s the mmimal amount of time
necessary for the molecule to leave the column if it never enters the stationary phase.
D, 1s the (random) time that the molecule spends in the stationary phase of segment ;.
D, can take on the values 0 1. 2, ... and 1t does so with probabilities p, p(1 — ),
ptl — p)2, . .respectively. This1s the distribution of a geometric random variable with
parameter p (ref 14). Thus the random vanables D, = 0, .. ,r — | are independent,
identically distributed, geometric random variables with parameter p The mean and
variance of such a geometric random variable is (I — p)ip and (1 — p)ip?. respective-
ly. Thus we obtain

r— 1 r—1

, |
KT = E(r + Z Dk) =r + Z E(D) =71 + r( , p) =
ko

Do+ k) (6)
P

P =1 r 1 r— 1

Var(T) = Var(r + Z Dk) = Var( Z Dk> = Z Var(D,) =

k- o0 k=0 k=0

)(1 _2”) — k(1 + k) (D)
P

We can once again apply the central hmit theorem of probability to conclude that Tis
asymptotically normal. 1 ¢ , as r becomes large the distribution of T approaches the
normal distribution [t 1s even possible to obtain the exact probability distribution of
T To do this we utilize an earlier result P {X(n) = 7} :(';)p’(l — py!
We obtain the following

P\T =n} = P{X(n — 1) = r — | and that the molecule 1s in the mobile
phase 1n the next time interval} =

P{X(n — 1) = r — 1} P{mooecule 1s in mobile phase in next time interval } =

[C-Dp P =pr e =00pad —pn

Thus

(n— 1 ke

T =D A+ k) (8)
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The result m eqn. 8 1s the fraction of molecules of capacity factor & that leaves a
column, contaming r theoretical segments. during the nth time period

4 CONTINUOUS FLOW MODEL

The basic assumptions of this model are as follows: (1} eluent flows at a con-
stant rate from one segment to the next; (2) the mobile and stationary phases remain
1in equilibrium at all times; and (3) there 1s perfect mixing in the segments. As we shall
be looking again at only 4 single molecule, we interpret condition (2) to mean that the
probability that the molecule 1s 1n the mobile phase at any given time 1s 117 and the
probability that it 1s in the stationary phase 1s (%~ ~Units™ are set up as follows. The
amount of eluent 1 one segment 1s one unit of volume The amount of time 1t takes
for one unit volume to flow from one segment to the next is defined to be one time
umt Thus. i a time interval Az, an amount of eluent As flows from each segment to
the next

Suppose we have r segments (numbered 0. 1. ., » — 1) Looking at some
melecule of sample as 1t moves through the segments, we see that.

(1) Tt spends a random amount of time. D, in segment 1.
(2) These “delay times™, D,, are independent, identically distributed random

variables
r—1
(3) The exit time for the molecule is Y D,
1-0

(4) The TS the molecule 1s 1n at time ¢, N(z), 1s given by

n - 1 n

N({) = {mmimum value of n such that Z D <t < Z D} (9)

t =0 1 =0

{Note the above D, 1s not to be confused with the one used m the discrete flow model.)

Clearly. our first task must be to determine the distribution of the random
variables, D,. To do this we look at a single segment. We wish to calculate the
probability that a molecule (which is in this segment) leaves the segment m the next
time mterval Az (A7 15 assumed to be small) For this to happen 1t 1s necessary that the
molecule (a) be 1n the mobile phase. and (b) be n that particular Ar volume of eluent
that 1s leaving This probability 1s

. B 1 10y b
Piay P{b}_(wk)( 1 )‘A'(l +/\»)

This result 1s characteristic of an CXpuueuual uela\ HME with parameter £ =
(ref 14) The density of such a random variable 1s i¢ ' (t = 0)

With this piece of information together with some standard results of prob-
ability theory, we can now determine the exit time density and the probability distri-
bution of the molecules’ position at time ¢ First, the distribution of the exit time 1s the
distribution of the sum of r independent 1dentically distributed exponential random

b
I+ &k
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variables Itis known that this distribution is a gamma distribution with parameters »
and 4 (ref 14) The density function 1s

Now we use the fact that the mean and variance of our exponential random vanables
are 1. ~and 1:2% respectively Let T denote the exit time [which will have the density f(1)
above]. Then.

r — 1 ¥ 1

E(T) = E(Z Dl> - Z E(D,) = }Z = (1 + k) (10)

=90 1 =0

r — 1 r — 1

Var(T) = Var(z D,) - z Var(D,) = ,%2 = (1 + k)’ (11)

r = 0 i =0

Once agam we can apply the central limit theorem to conclude that the distribution of
T 1s asymptotically normal (as r - x)

It will be noted that the mean exit time (eqn. 10) 1s the same for both models
but that the variance of the exit peak is r(1 + k)? for the continuous flow model and
rk(1 + k) for the discrete flow model.

To obtain the distribution of the position of sample molecules at time .
we note from eqn. 9 that D, being identically distributed random variables makes N(r)
a Poisson process with parameter - (ref. 15) [for the definition of N(7), see eqn. 9]:

: (;L’)kefll
PING) =k} = =3

(12)

fork =01, .1 -1

It can be shown by a shghtly more sophisticated application of the central himit
theorem that the distribution of N(f) 1s asymptotically normal (as f — =) (this result
also requures that r be large enough that the molecule will not yet have left the column
at values of ¢ large enough to yield a good normal approxmmation)

5 THEORETICAL PLATE NUMBERS IN THE TWO MODELS

The theoretical plate number, N. and the effective theoretical plate number,
N are of course widely used in chromatography. These may be defined by
[E(T)?

and

[E(T) - 5

N = -
eff Var(T)

(14)




STATISTICAL APPROACH TO CHROMATOGRAPHIC THEORY 201

where #, 1s the exit time for a non-sorbed substance and £(7) 1s the expected exit time
for a sample substance.

We can use the result we have obtained to calculate these quanuties for both
the discrete flow and continuous flow models For the discrete flow mode:

N - EDFE A+ 0P 4(1 + k) )

T Va) k(1 + by U &
CED) - k) kK
Nt = NVarty - “ k4 k) (1 + k) (16)

For the continuous flow model:

_EMP I+ P

©ovan(T) Al + k)P (17)
CLEM - P k) kY
Ner =Vary  “wirhr - \Tx% (1%

Thus, only in one of the four cases 1s the plate number result independent of &
6 SOME CONSEQUENCES OF THE DISCRETE FLOW MODEL

In the discrete flow model the mean and variance of the location, X(n), are
expressed 1n units mvolving TS (here theoretical segments indicate the position of the
molecule). On the other hand, the mean and vanance of the exit time, 7, must be
expressed in time units. The fundamental time unit 1s the time needed for eluent to
flow from one TS to the next. We wish to show that simple unrt conversions can be
used to relate results for peak locations to those for peak exit times. We define T, as
the time when a sample molecule enters the jth theoretical segments (note that 7, =
T'). Reasoning by analogy with eqns. 6 and 7, we have E(T)) = (1 + k) and Var(T))
= Jk{1 + k) Using eqns 3 and 4 to calculate £[X(n)] and Var[X(n)] when n =~
H1 + k)

1

Var[X(m)] = f1 + k)- (20)

k B k
Axkr '1+«%
Now we see that £(T) = E[X(m)](1 + k) and Var(T)) = Var[X(n)[(1 + k). In other
words, we can convert between means and variances of position and exit time random

variables simply by multiplying by the conversion fact (1 + k) for the means and
(1 + k)? for the variances.
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Counter-current chromatography (CCC) 1s a good system for illustrating the
practical results of the equations derived. In CCC the solute molecules attain equilib-
rium between the mobile and stationary phases prior to each transfer to the next tube
in the series Thus, each tube 1s by definition a theoretical plate, according to the plate
theory of chromatography, or a theoretical segment 1n our nomenclature. It has been
recogmzed by several authors that CCC alsg 1s a reasonable model for explaining
elution behavior in column chromatography, provided that axial diffusion, multi-
paths and other factors that contribute to peak broadening in column chromatogra-
phy, but which are non-existent in CCC, are also taken into account. This will be
done 1n the next section, but first let us consider only the peak broadening resulting
from 1nter-phase broadening effects, with CCC as a model.

Fig. 1 shows the distribution of a solute along the series of 36 tubes (r = 36)
m a CCC apparatus as a function of the number of transfers, n The peaks were
plotted for & = 1.5 from eqn. 5 with the aid of a programmable calculator. Note that
the peak has become well defined and approximately Gaussian after only a few
transfers and that the peak broadens and decreases in height as it moves along the
series of tubes. Fig. 2 shows the same peak, calculated from eqn. 8, as it leaves the
CCC apparatus and passes through an imaginary detector. The peak that was sym-
metrical in 1ts position distribution of molecules now has a distinct tail The expla-
nation for this 1s that the latter part of the peak continues to broaden after the earlier
portions have left the “‘column”. Ths effect 1s of some significance because it demon-
strates that in columns of low “‘performance” some peak tailing 1s predicted mathe-
matically and 1s not necessarily caused by a poorly functioning column.

The tailing of an exit peak decreases and the peak becomes more Gaussian as
the number of theoretical segments (r) 1n a column becomes larger The tailing, or
skewness, of a peak 1s predicted by the following equation:

2k + 3k + 1

1
Jr k¥ 17Tk + DI 1)

Coefficient of skewness =

(see ref. 14 for a definition of the coefficient of skewness). The second term in this
equation has a value of just over 2 from k& = 1 to k = 10, but increases rapidly as the
value of k& becomes very small.

It 1s well known that later eluting peaks are much broader than those with
shorter retention times. From the exit peak variance (eqn 7) 1t will be seen that the

peak width (4¢) 1s proportional to \/4(1 + k) and thus increases 1n approximately
linear fashion with & (except at very low values of k). It is interesting to compare this
with the way the width of a peak still on a column varies with &. This may be done by
calculating the peak widths when the peak maximum is located 1n the jth theoretical
segment 1n a column containing r theoretical segments. We shall choose j to be near
the end of the column, say j = 0 9 r. From eqn. 20 for the variance of a position peak
1.2
we see thatdo =4 l_%‘k In Table 1 we see that the widths of peaks centered at ;
vary only slightly with increasing k, much less than the exit peaks (of course it takes
longer for peaks of higher & to arrive at 7). The reason that elution peaks are so much
broader when & 1s high 1s that such peaks are moving more slowly and take longer to

pass through the detector.
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n =20

14— n =40 =

n=60

DENSITY x 10°

—

[ I <l I S | 1
¢] 4 8 2 16 20 24 28 32 36

TUBE NUMBER

F

g 1 Position peaks for a compound with ¥ = | 5 m a CCC apparatus of 36 tubes after » transfers

Exit peaks calculated for the discrete flow model using eqn 8 emphasize a
major drawback of the plate theory that has been so widely used in chromatography.
In no case does erther N or N, (calculated from eqns 13 and 14) agree with the actual
number of plates (tubes) in CCC, which ts r. The correct values for N and N, are
given by eqns. 15 and 16, respectively. Fig. 3 shows the expected values of ¥ and N
as a function of k, calculated from eqns. 15 and 16 for a CCC apparatus where r =
1000 The values of N are very high as & — 0 and become meaningless as a measure of
separating power. Similarly, a single value of H (height equivalent to a theoretical
plate) 1s an ambiguous expression of column efficiency when H varies so widely for
different peaks.

The application of egns 5 and 8 to CCC is well documented and there would
seem to be little doubt as to their correctness It is logical that eqns. 3-8 should apply
also to column chromatography An examination of actual column chromatograms 1s
now 1n order, to determine whether the equations do or do not apply.

T
30+ —
25»— —

Q
S 20+ -
»
15k .
-
|t
o 0+ —
2
w
o 5 .
0 1 1 ! | 1 )|
60 80 100 120

Fig 2 Exit peak for a compound with & = 1.5 from a CCC apparatus of 36 tubes (# = number of
transfers)
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TABLE |
WIDTHS (40) OF POSITION AND EXIT PEAKS AS A FUNCTION OF &

k Position width*  Exit widri** Extr width*xx
(TS) {TS) {sec,)
01 36 42 25
0.2 49 62 37
04 64 95 57
06 74 124 74
08 80 152 91
10 83 179 107
15 93 245 14.7
20 98 310 18.6
30 104 438 263
40 107 566 339
60 111 820 492
80 113 1073 64 4
100 114 1327 796

150 116 1960 1176

k 12
* Calculated from 40 = 4 [1 1+ kJ , where ; = 900

** Calculated from 46 = 4[rk(1 + k)]' 2. where r = 1000.
*** Calculated from the previous column for an eluent flow-rate of 16 67 TS/sec

4000

3860C

3200

2800

2400
N or

Netf
2000

1600

1200

800

S 1N S N N U WO T |

Fig. 3 Expected values of ¥ and N, for an exit peak from a CCC apparatus where ;1 = 1000
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7 CALCULATION OF PLATE NUMBERS FROM CHROMATOGRAPHIC DATA

When working with actual data for column chromatography, it 1s necessary to
consider the various dynamic effects that contribute to the width of chromatographic
peaks. The major effect almost always 1s what 1s termed “‘resistance to mass transfer”,
which we shall call "inter-phase broadening”. Additional peak broadening occurs
through axial diffusion, multi-paths (in packed columns) and extra-column effects
such as broadening n fittings, connecting tubing and the detector. Injection band
broadening 1s apt to be significant also, as was recognized by Keulemans as early as
19591617,

If we assume that these broadening effects act independently of one another,
the measured peak variance is the sum of the variances of the individual broadening
effects For capillary GC columns (where there 1s no multi-path effect), we can write

o’ =gl + 05 + 0, (22)

where ec stands for extra column, d for diffusion and 1p for inter-phase. The approach
taken will be first to estimate the peak variance resulting from axial diffusion and to
subtract this from the measured peak variance Then a plate number representing the
inter-phase broadening can be calculated from the slope of a plot of the remaining
peak variance against k(1 + k), which comes from the peak variance in the discrete
model, rk(1 + k).

7.1. Diffusion broadening, a2

The effect of diffusion on plate height, H, 1s given by the Van Deemter equa-

. B .
tion, which has the form, H = o + Cu. where B is the diffusion term. u 1s the linear

column flow-rate and C is the resistance to mass transfer. In this equation, 8 = 2D,
where D, is the axial diffusion coefficient 1n the gas phase (cm?/sec).

According to the classical definition of H and N, the diffusion contribution to
H 1s converted to o7 as follows

L Lo} 2D,
_L_ Lo _2b 23
i e PR TR (23)

» 2D, (1Y (0 + k)? 2D L(1 + k)zi
74 = v L B w

where L 1s the column length (cm) and # 1s the linear flow-rate (cm/sec).

One way to estimate the diffusion broadening variance 1s to run a chromato-
gram at two different flow-rates Diffusion broademng varies as the inverse cube of
the flow velocity, but mter-phase broadening varies only as the mnverse of the flow
velocity. This difference allows us to solve for diffusion broadenmg by solving two
simultaneous equations (the dependence of the broadening on flow velocity will be
considered 1n the next section)

Although this method works, a more convenient way 1s to use the method for

(24)
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estimating gaseous diffusion coefficients proposed by Giddings!'®:

1 1\%
10-371 75| o
o1 (g + )

D (forAB)= —— 1" — 2
o (or AB) = s S 4 (S

(25)

where M, and M, are the molecular weights of the carrier gas and a chromatographi-
cally separated substance, respectively, 7 is the temperature (°K) p is the pressure
{bar) and v, are empirically determined values for various atoms and groups making
up the carrier gas and the separated chemical. Giddings and co-workers obtained
excellent agreement (usually to within +35%) between D, values calculated this way
and experimentally reported values'®.

As will be shown by an actual example, we found that this method gives
reasonable results when apphed to column chromatography. Although the values of
D, decrease as one proceeds to mcreasingly higher members of a homologous series,
the fact that the D, values are multiplied by (1 + k)* means that ¢ (in sec?) actually
increases as one proceeds to later eluting peaks. Despite differences in individual D,
values, a linear regression plot of calculated a2 versus (I + k)? is generally obtained
with a high correlation coefficient.

7 2. Inter-phase broadening, J,zp

The general approach taken is to subtract o3 from the measured variance of
each peak and to plot the difference. a2, against one of the expressions for stochastic
peak vanance derived earlier. This should give a straight line with a slope related to a
plate number and an intercept indicative of extra-column peak variance.

However. one question 1s whether rk(l + k) in the discrete flow model or
r(1 + k)* 1n the continuous flow model 1s correct. For many plots, both give straight
lines by linear regression. This is because the ratio of(1 + k)?/k(1 + k) does not change
greatly with & at higher & values (say 2.5-15) and also that linear regression 1s insensi-
tive to points of lower &k that might not lie on a straight-line plot.

However, C values calculated from the Golay equation where several of the k
values are quite low shows that slopes of individual points (y/x for each point) are
nearly constant for plots of a2 versus k(1 + k) but they vary considerably for the
same k values when o2 1s plotted versus (1 + k)* This supports the contention that
the discrete flow is correct for column chromatography and that it 1s correct to plot 62
versus k(1 + k) for inter-phase broadening.

Using eqn 7 and making use of the conversion factor #4ir (sec/TS) it can be
shown that

P k(0 + k) LK+ k)

2
o
} Wi

1p

(26)

where L 1s the column length (cm), u 1s the linear flow-rate (cm/sec) and r 1s the
number of theoretical segments 1n the column at the flow-rate employed. However,
we know that the plate number, r, 1s proportional to the reciprocal of linear flow-rate.
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Introducing a plate number, ', which 1s the number of theoretical segments in a
column at u = lcm/sec
r

= —

U

, _ Lk + k)

Oy

(27)

’
ur

This equation for peak variance due to stochastic broadening was tested on data
published by Kaiser and Rieder!? for the separation of alkanes and aliphatic esters by
capillary column GC at six different flow-rates. First, the peak vanance resulting
from axial diffusion was subtracted from the measured peak variance as outlined
above. Then the remaining variance (o7,,) was plotted agamst k(1 + k) and the plate
number r calculated from the slope of the straight-line plot obtained. A sample
calculation is shown in Table 2. The results are summarized in Table 3, which shows a
constant value for " within a reasonable experimental error The plate number, r, at
any flow-rate can be calculated simply by dividing +* by w.

The plate number, #’, seems to be a convenient way of evaluating and compar-
ing column performances [t 1s computed easily from measured peak variances using
linear regression and 1s independent of peak capacity factor. It 1s also independent of
axial diffusion effects. This 1s good because diffusion really has nothing to do with the
separating ability of a column other than contributing to the broadening of peaks. In
some respects # 1s stmilar to the C term 1n the Van Deemter and Golay equations.
However, C 1s different for each peak whereas # 15 not. It would appear that " can be
more easily and accurately measured from ordinary chromatographic data than can
C.

At a fixed flow-rate 1t 18 convenient to obtain a plate number that includes

TABLE 2

SAMPLE DATA FROM KAISER AND REDIER'® FOR 1, = 146 sec SHOWING AXIAL DIFFU-
SION CONTRIBUTION TO PEAK VARIANCE

a? (diffusion) was calculated from eqn. 24 using D, values calculated from eqn 25 at an estimated pressure
of } 2 bar The values of the gaseous diffusion coefficient (D,) used ranged from 0 0795 for C, 10 0 0633 for
Cl 3

Compound*  k o? (measured) a® (diffusion) a* (nety

fsec?) /sec?) fsec?)
C, 126 152 063 088
Eg 145 196 074 122
Cio 238 415 133 282
E,, 275 488 1 64 3.24
C,, 451 1041 338 703
E,, $23 1334 4R 902
C,, 855 3534 9 65 25 69
E,, 994 4388 12 66 3122
C

162 1127 300 827

fw

!
1
I
|
I

* C = p-alkane and carbon number; E = alkane ester and carbon number
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TABLE 3

PLATE NUMBER (+'y CALCULATED FROM DATA OF KAISER AND RIEDER'? AFTER SUB-
TRACTING DIFFUSION PEAK VARIANCE

o (sec) uflomecr 1 10°(TS)

276 725 919
154 4 1295 10 40
146 0 1370 9 86
106 8 1873 1071
882 2268 953
874 22 88 982

Average” 9.92 (s = 0.56)

broadening resulting from axial diffusion as well as inter-phase peak broadening.
This can be done simply by measuring the variance of each of the chromatographic
peaks and plotting measured o® against peak varance, k(1 + k). The apparent plate
number, r, is obtained from the slope of the linear plot. The intercept 1s indicative of
the extra-column peak broadening plus the diffusion broadening of a non-sorbed or a
very slightly sorbed peak.

This simple plotting method works because a plot of a2 versus (1 + k)?1s hnear
and a plot of o2 versus k(1 + k) is almost linear. The flow-rates that are normally
used 1in chromatography sufficiently fast that diffusion contribution to peak width
usually is not very substantial. Thus, any shght non-linearity of the &2 part of the plot
1s msignificant.

The equation relating measured peak variance to » and k 1s derived by convert-

2
ing the peak vanance, rk(1 + k), from TS units to sec® by dividing (Z’T (¢, 18 the
0
hold-up time):
k(1 + k to)?
2 KA K)o gy (28)

oo = =
P ',2 /( 10)2 ¥
where ¢, and 1, are now in minutes or seconds Substitution into eqn. 22 gives

o2 = (to)*
.

k(1 + k)] + ol (29)

where o, 1, and 6, are iIn minutes or seconds This equation predicts that a plot of 62
versus k(1 + k) for the various peaks in a chromatogram will give a straight line with
slope (t,)%/r and intercept = 62,

The vahdity of eqn. 29 was tested on a number of actual chromatograms
Usually the chart speed of the recorder was 4-10 cm/min to facilitate measurement of
the peak widths with a ruler and magnifying lens. The peak variance was obtained
from the peak width at half of its height, w;; (where ¢ = 2.355 wy,) 1n order to
mimmmize the effect of any tailing in the lower part of the peak.

Data for five chromatographic separations are summarized in Table 4. Chro-
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TABLE 4
CALCULATION OF ; FROM CHROMATOGRAPHIC DATA

Chromatogram Peak k kil + k) o
(A) n-Alkanes C, 0.14 016 0 00032 {min?)
by capillary Cq 0.8 144 0 00090
Ge Co 14 3.36 000187
fp =972mm C, 23 759 0.00380
Oven at 130 C C, 39 191 0 0096
Cy, 65 48 8 00249
Ci; 108 1274 0 0661
({B) n-Alkanes Cg 0.97 191 462 10°°
(min?)
by capillary C, 231 765 141 107°
GC at two Cio 542 3438 628 1073
different C,, 1233 164 4 277-107°
temperatures*  Cg 060 096 406 10°°
First set, C, 144 351 721 1073
60" C, Cyo 326 139 260 10°°
second set C, 719 589 101-10°°%
70°C
to = 120 min
(C) Carboxylic Acetic 18 5.04 0.0451 (mm?)
acids by Propionic 34 150 0.0649
packed-column Isobutyric 50 300 0.0909
GO, n-Butyric 655 494 01303
{p, =20mm Isovaleric 97 104 0.2426
n-Valeric 133 190 0.4057
{D) Alkah Li* 435 2326 51 8 {sec?)
metal 10ns Na* 610 432 830
by 1on NH; 847 80.1 1480
exchange*** K* 1145 1426 229 8
50-ul sample  Rb~ 130 1820 2958
1o = 42 5 sec
(E) Alkal Li™ 4.90 28.88 54 6 (sec?)
metals by Na™ 654 49.30 624
1on exchange  NHj 944 98.47 1172
20-ul sample K7 1251 169.0 2000
1, = 39 sec Rb~ 1443 2227 2536
{F) Pesticides  Sevin 0955 187 0 000357 (min?)
by liquid Prolate L16 250 0000391
chromatog- Ruelene 172 467 0 000786
raphy 1, = Coral 1.94 572 0000612
0445 min* Dursban 345 1535 0001356
trans- 581 3955 0003236
Permathrin
crs- 680 5301 0 004100
Permathrin

* | Kaczvinsky, unpublished results (1981)
** Data from chromatogram i an advertising brochure (1981)
*** (G Sevenich. unpublished results (1981)
¥ L Ruce, unpubhshed results (1981)

Results
Correlation coefficient = 0 9999
a3 = 000001

Slope = 0 00518

i = 182,500

Correlation coefficient = 0 9999
g5 =227 1073

Slope = 1676 10°°

r = 85,900

Correlation coefficient = 0.9998
o3 = 00348

Slope = 000196

r = 2040

Correlation coefficient = 0.9988
a2 =190

Slope = 1 514

= 1190

Correlation coefficient = 0.9979
g3 = 16.3

Slope = 1067

o= 1430

Correlation coefficient = 0.9996
63 =211 107*

Slope = 07445 107

b = 2660
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Fig 4. Linear regression plot for chromatogram C in Table 2

matogram A 1s unique among those tested in that the mntercept, ¢2,, was essentially

zero. Of course there 1s some error in measuring & and 62 for each peak, but the
equipment and technique used were both known to be excellent,

The data for B in Table 4 are for two chromatograms run at different tempera-
tures, yet all eight points he on a straight line within reasonable experimental error.
The intercept, o2, 1s significant in this instance and constitutes nearly 50°; of the
measured variance of the first C; peak. Note that the early peaks are far more affected
by o2, than the latter ones 1f the actual peak widths (4 o) are compared.

Chromatogram C was run on a packed GC column and shows a far greater 2,
relative to the measured peak variances than the chromatograms or capillary col-
umns. Fig. 4 confirms that the experimental points actually do fall on a straight line
when plotted according to eqn. 29 It 1s interesting to calculate the traditional plate
number, N, before and after subtraction of o2, from o? for each peak. Before any
correction 1s applied, N increases from peaks 1 to 6: N = 695, 1190, 1580, 1750. 1890,
2020 After subtracting .2 from the variance of each peak. N decreases from peaks 1
to 6° N = 3050, 2570, 2390, 2200, 2200

Chromatograms D and E are for an ion-exchange separation of alkal metal
1ons. Again, the data support the validity of eqn. 28 even though some of the peaks
were tailed, and accurate measurement of peak width was difficult. The intercept, 62,
1s smaller and the value of r s larger when the sample volume 1s reduced from 50 to 20
ul.

Chromatogram F in Table 4 was obtained with a commercial liquid chromato-
graph with a 10 cm x 4.6 mm 1D. column. The large value for r confirmed the
excellent separating ability of the column, but the additional broadening represented
by a2, was large. Much of this can be attributed to the use of a small “"guard” column
filled with a coarser reversed-phase absorbent than that used in the chromatographic
column Subsequent replacement of the guard column with a pre-column of slightly
smaller diameter packed with 10-um absorbent reduced 2, by almost 50 %,

While there 1s no direct proof that the intercept, o2, of our linear regression
analysis gives an accurate measure of the sum of in-column and extra-column broad-
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ening that applied equally to all peaks, the underlying principle does appear sound
and the results obtamed from actual data are reasonable The idea of linear regression
analysis of chromatographic data originated with Kaiser and co-workers!?2!, who
plotted w, , against k. They obtained the “real” number of theoretical plates from the
slope and an indication of the extra-column peak broadening from the intercept We
think that the concept pioneered by Kaiser and co-workers 1s a valuable one but that
their method of plotting the data 1s not completely correct. According to Guiochon??,
a plot of w, , versus k is not linear at all values of k and the itercept of such a plot
underestimates the “extra-column™ peak broadening

Smuts et al.?® proposed a plot of peak variance agamnst (1 + k)2, although the
purpose of this work was different from ours. This type of plot would follow if the
continuous flow model [where the peak varnance is (1 + k)?]1s correct for column
chromatography. However, Smuts ef a/.?* stated that such a plot 1s not completely
linear Plots of a2 versus (1 + k)* for the data in Table 2 also did not give a completely
straight line, although the intercept was often not greatly different from that obtained
when using the discrete flow model. All of our results suggest that the discrete flow
model is better for column chromatography.

8§ SUMMARY

The classical plate theory, and onginal extensions of it, are derived by using
simple concepts from the theory of probability and statistics. Each molecule of a
sample chemical substance 1s examined separately and its motion through the column
1s described as a stochastic process Equations for calculating the mean and variance of
chromatographic peaks as a function of capacity factor. k. are given for a discrete
flow model and a continuous flow model. The variance of position and exit
peaks as a function of capacity factor 1s compared and a simple relationship between
the two is derived. The expressions for the mean and vanance of chromatographic
peaks are used (o define plate numbers that describe the separating ability of a
chromatographic column under fixed conditions and which. unlike the classical
plate numbers N and N_,. are independent of capacity factor. & In capillary
column GC a method is given for determining diffusion coefficients 1n the gaseous
phase that makes 1t possible to subtract the contribution to peak variance resulting
from axial diffusion. When the remaining variance is plotted against k(1 + k), linear
regression indicates a straight line with an excellent correlation coefficient and an
mtercept that 1s indicative of extra-column peak broadening. A plate number, #, is
computed from the slope that 1s independent of k and can be used to calculate a plate
number, r, for any given linear flow-rate Another simple plotting method gives a
plate number that includes the multi-path contribution to peak broadening for
packed columns. Numerous examples are given to demonstrate the applicability of
these simple concepts to actual chromatographic data.
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